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An asymptotic series solution is obtained for the low Reynolds number flow 
through an axisymmetric tube whose radius varies slowly in the axial direction. 
Expressions for the pressure drop along the tube and the shear stress at the wall 
are derived. The analysis is applicable to such problems as the flow through 
viscometric capillary tubes and the flow through blood vessels. 

1. Introduction 
To determine the shear stress distribution on the wall of an arteriosclerotic 

blood vessel, Lee & Fung (1970) obtained a numerical solution for the low Rey- 
nolds number flow through a locally constricted tube. Because of the inflexibility 
of numerical techniques, the shape of the tube was fixed during the study. It 
would seem to be of interest to find an analytic expression for the flow through an 
arbitrarily shaped tube. Towards this goal, the flow through a class of axisym- 
metric tubes of slowly varying radius is now considered. 

The concept of a slowly varying flow forms the basis of a large class of problems 
in fluid mechanics for which viscous forces dominate the non-linear inertial forces 
(see, for example, Batchelor 1967, $4.8). Recently, this concept has been applied 
to the problem of peristaltic pumping by Burns & Parks (1967), Shapiro, Jaffrin 
& Weinberg (1969), and Lykoudis & Roos (1970). In these works, however, the 
inertial terms in the equations of motion are neglected and so the motion is 
approximated by a Stokes flow. 

Tanner & Linnett (1965) extended the perturbation analysis of Blasius (1910) 
to predict the kinetic energy losses of viscometric capillary tubes. However, they 
neglected ‘second-order ’ terms in the momentum equations so that the pressure 
was assumed to vary in the axial direction only. In the present work, a systematic 
analysis of the full equations of motion is undertaken and an asymptotic solution, 
valid for slowly varying tubes and low Reynolds number flows, is obtained. 

2. Equations of motion 
We consider the motion of a fluid in the domain D: - co c x c co, 0 < r c a(x) 

and 0 < 8 < 27r, where (2, T ,  8)  are cylindrical polar co-ordinates such that r = 0 
is the axis of symmetry for the duct and r = a is the wall of the tube. By assuming 

29-2 



4 5 2  M .  J .  Manton 

that  the motion is axisymmetric and steady, and that the fluid is incompressible, 
the equations for the conservation of momentum and volume are 

( 2 . 1 ~ 4  b , c )  1 u u x  + vur + P ~ / P  = ~ { u x x  + ( rUr)r / r> ,  

U V ~  + +pr/p = ~ { ~ x x  + (rvr)r/r - v/r2),  

lux+ (rv),/r = 0, 

where (u, v) are the fluidvelocity components in the (x, r )  directions, respectively; 
p is the pressure; v is the constant fluid viscosity; p is the constant fluid density 
and the subscripts (x, T )  denote partial differentiation with respect to (x, r ) ,  
respectively . 

We now introduce a stream function $such that 

u = $Jr and v = -$x/r, 12.2) 

Q = ur-vz = $xxlr+ (@r/r )r*  

and a vorticity component Q such that 

( 2 . 3 )  

The pressure p may be eliminated from ( 2 . l a ,  b )  to  yield, from (2.1 b )  to (2.3), 
the equation for the conservation of vorticity, viz. 

Thus, the motion within the domain D obeys equations ( 2 . 3 )  and (2.4). 
On t h e  boundaries of D, the following conditions must be satisfied: 

u+ (daldx) o = 0 on r = a, \ 

(2 .5  a-e) I / o u d r / o z n r d ~ u  = 27-r$0, constant, 

-+ = o on r = 0, v = o on r = 0, au/ar = o on r = 0.) 

Condition ( 2 . 5 ~ )  states that  there is no tangential fluid motion a t  the wall of the 
tube, whilst ( 2 . 5 b ,  c )  specify the constant flow rate through the tube and (2.5b) 
implies that  there is no fluid motion normal to the tube wall. Conditions ( 2 . 5 d 7  e )  
ensure that the solution is regular a t  the axis of the tube. Putting ( 2 . 2 )  into (2 .5) ,  
the boundary conditions become 

(2 .6  a-e) 
@,, = O on r = a(x),  $ = on r = a(x),  @ = 0 on r = 0, 

$Jr -f 0 as r -+ 0, ($Jr),.+ 0 as r --f 0. 

The required boundary-value problem is therefore completely specified by 
equations ( 2 . 3 ) ,  (2.4) and ( 2 . 6 ) .  

We note that the solution domain D is infinite in the x direction and so an 
arbitrary 'initial' profile cannot be specified on some cross-section of the tube. 
Hence, the solution can be compared only with experimental results which are 
insensitive to the entry conditions of the tube. 
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3. Formulation for slowly varying tube 
We now seek a solution of the system (2.3), (2.4) and (2.6) for the case when the 

radius of the tube a varies slowly in the axial direction. In  particular, the function 
a is assumed to depend upon a small parameter E such that 

a(x ; s )  = a,S(ex/a,), (0 < E << l), (3.1) 

where a, is a constant characteristic radius of the tube. In  the limit E --f 0,  the tube 
is of constant radius and the streamfunction is given by the familiar Poiseuille 
relation 

(3.2) 

i.e. the solution is independent of x. As E increases from zero, we expect that the 
variation of $ in the axial direction will depend upon ex rather than x alone. Thus, 
we look for a solution of the form 

($IE=, = $d2(r/aJ2 - (r/ao)4); 

$ = $o$(z,x*; 4 ,  Q = ($o/a3w(z,x*; 4,  (3.3) 

where z = r/ao is the normalized radial co-ordinate and x* = exla, is a 'slowly 
varying' normalized axial co-ordinate. By putting (3.1) and (3.3) into (2.3)-(2.6), 
the normalized equations of motion become 

on z = S(x*),  
$ = l  

subject to the conditions 
(3.5) 

9 = 0 on x = 0,  $ z * / x +  0 as z +  0, ( $ z / ~ ) e - +  0 as 2 3 0 ,  (3.6) 

where R = $,/a,v is the characteristic Reynolds number of the flow. 
The system (3.4)-(3.6) implies that, because E = o(l) ,  two distinct ranges exist 

for the order of magnitude of R; viz. (i) ER = o(1) and (ii) ER = 0 ( 1 )  or larger. 
Case (i) gives low Reynolds number ('viscous ') solutions in which viscous effects 
dominate the non-linear inertial effects. In cam (ii), the inertial terms are com- 
parable with, or greater than, the viscous terms, and hence this gives high Rey- 
nolds number ('inertial') solutions. We shall consider only case (i); in particular, 
we take R equal to a constant which is formally of order unity. All the low Rey- 
nolds number solutions can readily be derived from this solution. 

4. Low Reynolds number solution 
Assuming that R is fixed and is of order unity, we expand $ and w in asymptotic 

power series in E ,  substitute into the system (3.4)-(3.6), and equate the coeffi- 
cients of like powers of E .  That is, 

00 m 

n=o n=O 
(9 = 2 E ~ $ ( ~ ) ( z , x * ;  R) and w = endn)(z,x*; R),  (4.1) 



etc. subject to the boundary conditions 

i (4.5 a-e) 

The zeroth-order equations (4.2) may be readily solved to yield 

q5(O)  = A ( z * )  z4 + B(x*) z2 + C(x*) z2 (In z - 4) + D(x*), 

where A ,  B,  C and D arefunctionsof x* which must be determined from the bound- 
ary conditions. Now conditions (4.5~-e) imply that C and D must be zero. The 
functions A and B are easily found from conditions (4.5a, b )  so that finally 

(4.6) q5(O)  = ~ ( z / X ) ~  - ( z / S ) ~ .  

Comparing (4.6) with (3.2), we see that the zeroth-order solution is the Poiseuille 
flow appropriate to the local radius of the tube. Similarly, the first-order solution 
is found from (4.3), (4.5) and (4.6) to be 

$1) = RS4(i/X4),.{& (Z/S)~- i(z/S)6+ & ( z / S ) ~ - + ( Z / S ) ~ ) .  (4.7) 

This represents an inertial correction allowing for the advection of zeroth-order 
vortex lines by the zeroth-order axial velocity component. By putting (4.6) and 
(4.7) into (4.4) and (4.5), the second-order solution is found after much algebra 
to be given by 

G 

n = l  
q5(2) = R2 C ( - )n+l a,,(z/X)za + is6( l/~S1~)~*~. @ ( z / X ) ~ -  ( z / X ) ~  + &(Z/X)~}, (4.8) 

where al = &{yI‘+ 13&}, a2 = {JgP + 29&), 

a3 = +&P+Q}, 

a5 = &{P+%?}, 

a4 = &{I’ + 3Q}, 

‘6 = &{Z l P  + Q} ,  
and P = s * [ ( i / ~ 4 ) ~ , 1 2 ,  Q = s 4 ( 1 / ~ 4 ) ~ * ~ + .  

The first terms in $h@) represent an inertial correction accounting for the ad- 
vection and stretching of the zeroth- and first-order vortex lines by the first- and 
zeroth-order, respectively, velocity components. The second term in (4.8) is 
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a viscous correction which accounts for the curvature in the axial direction of 
the zeroth-order vortex lines. 

Thus, from (4.1) to (4.8), the normalized streamfunction $ and vorticity w 
of the motion are given by 

Re dS $ = ~ ( z / S ) ~  - ( z / S ) ~  - - - {‘(z/X)* - ~ ( X / S ) ~  + ( z / S ) ~  -$(z/S)z] sax* 9 

and 

(4.9) 

+? 5 ( - )n+l 2n(2n - 2) U , ( Z / X ) ~ ~ - ~  + e2S3 ( 1/S4)x*x* 
n=2 

x ( ( z / s )~-  ~ ( X / S ) )  + 2~241/~2) ,* ,*  (z/s) + o(e3). (4.10) 

Equations (4.9)-(4.10) are valid for all Reynolds numbers such that ER = o(1). 

5. Pressure distributions 
We have shown that the zeroth-order flow through an axisymmetric tube is a 

Poiseuille flow. Since, for a Poiseuille flow, the pressure is a linear function of the 
axial co-ordinate and it is inversely proportional to the Reynolds number, we 
seek a solution for the pressure of the form 

where 

P = (Pv@o/a3!79 

q = xF(x*) +P(z, x*; 8 )  

m 

and P = 2 enPn)(z,x; R). 
n=O 

By putting (2.2), (3.3), (4.1) and (5.1) into (2.1) and equating the coefficients 
of like powers of E ,  a system of equations for the functions F and pCn) is found. 
The equations for F ,  P(O) and P(l) are 

(x*F),* = (~($L0’lz)z)z/z; (5.2) 

= (z ($2 ’ /z )z )z /~  + fq($W) ($WZ + ($W ($io)/z)z - ($L0)/4 ($L1)/z)x* (5.4% b )  I Pi1) = ($$?/z)/z2- (z($7@/z)L.)z/z, 

- ($PW ($~o’/z)x*} + ($lo’/z)x*x*. 

Equations (5.2), (5.3b) and (5.4b) describe the forces against which the a,xial 
pressure gradient acts. To the zeroth order, there is only a viscous force propor- 
tional to the radial curvature of the axial velocity component. The first-order 
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term includes an inertial force due to the rate of change of axial momentum and 
at the second order aviscous force proportional to the axial curvature of the axial 
velocity component is added. Equations (5.3a) and ( 5 . 4 ~ )  show that the radial 
pressure gradient is of order 6 and that it balances a viscous force proportional to 
the radial curvature of the radial velocity component. 

Equations (5.2)-(5.4) may be solved successively so that finally the normalized 
pressure distribution in the duct is found to be 

1 1  R2Jx'(g)ad$+&cR2-- 1 dS 
ax* X5 dx* q =  -1611 ~ +-++Wge €X4(X*) 484 

dx" 

The expression (5 .5 )  is equal to the result obtained by Tanner & Linnett (1965) 
plus the last two terms which represent a second-order viscous correction. 

6. Shear stress at wall of tube 
The stress tensor for the motion is given by 

cr.. 23  = -pS i i+2pve i j ,  

where the rate of strain components are 

- au. av 1 au au 
e x x  - - au, e r r =  -. ar' em = 2 (z + z )  

The shear stress at  the wall r = a(x)  is 

Now from boundary conditions (2.6a)-(2.6b), it is seen that 

(6.4 a-c) 

(6.5) 

Putting (6.4) into (2.3), (6.1)-(6.3), we finally show that the shear stress at the 
wall is proportional to the vorticity; in particular, 

T =pi2 on Y = a(x).  

7 = ( 4 T ) / ( P ~ . , ) ,  (6.6) 

1 @r = 0 

@rr = -@xr/(da/dx) on r = a(x).  

$xz 7 - @zr/  (da/dx) 

We now introduce a normalized stress 

and then, from (3.3), (4.10), (6.5) and (6.6), it is found that the normalized shear 
stress at  the wall of the tube is given by 
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7. Discussion 

of exponentially increasing radius, i.e. 
Tanner & Linnett (1965)  have investigated the flow through a capillary tube 

S = ex*, (7 .1)  

in order to determine the Reynolds number at which separation occurs. Putting 
(7.1) into (6 .7) ,  we see that the shear stress at  the wall of an exponential capillary 
tube is given by 

(7 .2)  7 = - 8e-3"' (1 - ~ E R  - 1 3 ~ 2  R2 - 1 2 22' + O($)). 
136 3c e 

Equation (7 .2 )  suggests that separation, defined by r = 0, will occur at  any Rey- 
nolds number provided that the tube is long enough; i.e. viscous effects will 
always cause separation eventually. However, for the tube used by Tanner & 
Linnett, the viscous term of order €2 was not large enough for this effect to be 
found. 

Although (7 .2 )  is valid only for ER = o( l), an estimate of the Reynolds number 
at which separation occurs may be found by neglecting terms O ( E R ) ~ ,  n > 2 ;  
viz. ER - 2. On the other hand, pressure loss measurements by Tanner & Linnett 
show that the low Reynolds number flow ' breaks down ' for ER 5 1. The reason for 
this is seen by calculating from (5 .5)  and (7 .1 )  the pressure loss Aq between the 
sections 0 and x* of the tube. Thus, 

Aq = - ( ~ / E ) { [ ~ - E R - $ & E ~ R ~ + O ( E ~ ) ]  [l-e**] 

- e2 [ (~ /S )2 -# ] [1 -e -~*]+O(~~) ) .  (7 .3)  

Now (7 .3 )  shows that the inertial forces cause the pressure loss to be less than the 
Poiseuille loss. In  fact, the inertial pressure gain becomes comparable with the 
Poiseuille loss for ER - 1. Hence, the low Reynolds number flow regime breaks 
down a t  this stage, before separation has occurred. 

We also note from (7 .3 )  that the second-order viscous term acts to increase the 
pressure loss over most of the tube. However near the wall viscous forces tend to 
decrease the loss. This is consistent with the fact noted above that viscous effects 
lead to flow separation at the wall. 

In  a numerical study, Lee & Fung (1970) considered the flow through a locally 
constricted tube, defined by 

where E = 2 .  Clearly, the asymptotic expansions derived above are not strictly 
valid for the large value of E used in the Lee & Fung investigation. However, 
many features of the flow are adequately described by these expansions. Figure 1 
compares the normalized shear stress at the wall for R = 0 as calculated from 
(6 .7 )  neglecting terms O(e3) with that calculated exactly by Lee & Fung. It is 
seen that the maximum shear stress found from the approximate expression is 
only about 10 yo greater than the exact result. Equation (6 .7)  shows that as the 
Reynolds number increases, the point of maximum shear stress moves upstream 
due to the slope of the tube wall; this effect was observed by Lee & Fung. 

(7 .4)  S = 1 - le-X*' 
2 ,  
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As noted above, a rough estimate of the conditions for flow separation may be 
found by considering the terms only O(E)  in the expression (6.7) for the shear 
stress. Then separation occurs when 

&R(l/S) dS/dx* - 1.  

Now for the locally constricted tube (7.4), the maximim value of (1/3S) dS/dx* 
is about 0.2, and hence separation should occur when R N 2.5. This may be com- 
pared with the value of R = 2.475 found by Lee & Pung. 

- 1  0 

X* 

FIGURE I .  Normalized shear stress at the wall of a locally constricted tube (7.4) for R = 0 ;  
, from (6.7) t o  O(e2); ---- , from Lee & Fung (1970). 

Fry ('1968) used the expression 

T = s (S/2)  ap/ax* at z = S (7.5) 

to calculate the shear stress from the measured pressure gradient. Differentiating 
(54, we find that 

i.e. the term of order e on the right-hand side of (7.5) is three times greater than 
that on the left-hand side (see (6.7)). Thus, the expression (7.5) is invalid. 

I should like to thank R. E. Luxton for discussion of this work. 
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